Плазма или ЖК что лучше? Плазменный монитор Прочие достоинства плазменной панели.

Корпус

Индикаторы

Индикаторы устанавливаются в основном на компьютеры и периферийные устройства. Они представляют собой различные светодиоды, небольшие экраны, или бывают позаимствованы из других устройств. Простым примером индикатора может быть амперметр, поставленный на провод идущий к жесткому диску. При работе с памятью, стрелка будет двигаться. Но индикатор может нести помимо декоративной и информативную функцию - датчик температуры внутри системного блока сообщит вам, если компьютер перегреется. Самые сложные индикаторные системы собираются на микроконтроллере и содержат дисплей, способный показывать текст и даже графику, иногда в цвете. Проектирование таких схем достаточно сложно. В этом нелегком деле помогут учебники по цифровой технике и микроконтроллерам.

Иногда для воплощения творческого замысла моддер принимает решение вместо переделки существующего корпуса купить другой, более красивый, либо вообще сделать новый (иногда с использованием деталей существующего). Часто, особенно при использовании специально предназначенных для моддинга миниатюрных материнских плат (например, Mini-ITX), компьютер собирается в корпусе от какого-либо иного технического устройства, например, пылесоса (такой мод реально существует). Интересным решением является использование полностью прозрачного корпуса. Ввиду того, что готовый прозрачный корпус дорог (около 150 долларов), его часто изготавливают самостоятельно с нуля. При изготовлении корпуса нужно помнить, что металл используется не случайно. Компьютер генерирует очень много радиопомех, а металлический корпус поглощает их. Прозрачный корпус может ухудшить работу радиоприемников, телевизоров и высококачественной аудиоаппаратуры вблизи компьютера, так что будьте готовы к необходимости экранирования корпуса. То же самое относится и к корпусам из дерева. В некоторых странах (не в России) неметаллические корпуса запрещены.


Мониторы

Век мониторов с электронно-лучевой трубкой неотвратимо уходит в прошлое. Невероятно, но за каких-то полгода многостраничные журнальные обзоры новейших моделей традиционных мониторов уступили место обстоятельным описаниям свойств плоскопанельных дисплеев, прежде всего жидкокристаллических, а теперь и плазменных. Да, технологии не стоят на месте, и вот уже плазма, высшее энергетическое состояние вещества, работает там, где требуется молниеносная скорость обмена информацией, поразительная оперативность, ослепительная новизна. Однако коммерческий цикл любого изобретения не вечен, и вот уже производители, запустившие массовое производство LCD-панелей, готовят следующее поколение технологий изображения информации. Устройства, которые придут на замену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer - ветоизлучающие полимеры), только выходят из научных лабораторий, а другие, например, на основе плазменной технологии, уже представляют собой законченные коммерческие продукты. Хотя плазменный эффект известен науке довольно давно (он был открыт в лабораториях Иллинойского университета в 1966 году), плазменные панели появились только в 1997 году в Японии. Почему так произошло? Это связано и с дороговизной таких дисплеев, и с их ощутимой "прожорливостью" - потребляемой мощностью. Хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар. Несравненное качество изображения и уникальные конструктивные особенности делают информационные панели на плазменной технологии особенно привлекательными для государственного и корпоративного сектора, здравоохранения, образования, индустрии развлечений.


По способу формирования изображения мониторы можно разделить на две группы:

  • Жидкокристаллические экраны
  • Плазменные дисплеи
  • C электронно лучевой трубкой(ЭЛТ)

Плазменные дисплеи.

Разработка плазменных дисплеев, начатая еще в 1968 г., базировалась на применении плазменного эффекта, открытого в Иллинойсском университете в 1966 г.
Сейчас принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества (примерно так же, как работают неоновые лампы). Заметим, что мощные магниты, входящие в состав динамических излучателей звука, расположенных рядом с экраном, никак не влияют на изображение, поскольку в плазменных устройствах (как и в ЖК) отсутствует такое понятие, как электронный луч, а заодно и все элементы ЭЛТ, на которые так воздействует вибрация.

Формирование изображения в плазменном дисплее происходит в пространстве шириной примерно 0,1 мм между двумя стеклянными пластинами, заполненном смесью благородных газов – ксенона и неона. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники, или электроды, а на заднюю – ответные проводники. Подавая на электроды электрическое напряжение, можно вызвать пробой газа в нужной ячейке, сопровождающийся излучением света, который и формирует требуемое изображение. Первые панели, заполнявшиеся в основном неоном, были монохромными и имели характерный оранжевый цвет. Проблема создания цветного изображения была решена путем нанесения в триадах соседних ячеек люминофоров основных цветов – красного, зеленого и синего и подбора газовой смеси, излучающей при разряде невидимый глазом ультрафиолет, который возбуждал люминофоры и создавал уже видимое цветное изображение (три ячейки на каждый пиксель).

Однако, у традиционных плазменных экранов на панелях с разрядом постоянного тока имеется и ряд недостатков, вызванных физикой процессов, происходящих в данном типе разрядной ячейки.

Дело в том, что при относительной простоте и технологичности панели постоянного тока, уязвимым местом являются электроды разрядного промежутка, которые подвергаются интенсивной эрозии. Это заметно ограничивает срок службы прибора и не позволяет достичь высокой яркости изображения, ограничивая ток разряда. Как следствие, не удаётся получить достаточного количества оттенков цвета, ограничиваясь в типичном случае шестнадцатью градациями, и быстродействия, пригодных для отображения полноценного телевизионного или компьютерного изображения. По этой причине плазменные экраны обычно использовались в качестве табло для демонстрации алфавитно-цифровой и графической информации.

Проблема может быть принципиально решена на физическом уровне путем нанесения на разрядные электроды диэлектрического защитного покрытия. Однако, такое простое на первый взгляд решение в корне меняет принцип работы всего устройства. Нанесенный диэлектрик не только защищает электроды, но и препятствует протеканию разрядного тока. На деле система электродов,покрытых диэлектриком, образует сложный конденсатор, через который протекают импульсы тока длительностью порядка сотни наносекунд и амплитудой в десятки ампер в моменты его перезаряда. При этом алгоритм управления с тановится более сложным и достаточно высокочастотным. Частота повторения импульсов сложной формы может достигать двухсот килогерц. Все это значительно усложняет схемотехнику системы управления, однако позволяет более, чем на порядок повысить яркость и долговечность экрана и дает возможность отображать полноцветное телевизионное и компьютерное изображение со стандартными кадровыми частотами.

В современных плазменных дисплеях, используемых в качестве мониторов для компьютера (причем конструкция является не наборной), используется так называемая технология - plasmavision - это множество ячеек, иначе говоря пикселей, которые состоят из трех субпикселей, передающих цвета - красный, зеленый и синий.

Газ в плазменном состоянии используется, чтобы реагировать с фосфором в каждом субпикселе, чтобы произвести цветной цвет (красный, зеленый или синий). Пиксел в плазменном (газоразрядном) дисплее напоминает обычную люминесцентную лампу - ультрафиолетовое излучение электрически заряженного газа попадает на люминофор и возбуждает его, вызывая видимое свечение. В некоторых конструкциях люминофор наносится на переднюю поверхность ячейки, в других - на заднюю, а передняя поверхность при этом изготавливается прозрачной. Каждый субпиксел индивидуально управляется электроникой и производит более чем 16 миллионов различных цветов. В современных моделях каждая отдельная точка красного, синего или зелёного цвета может светиться с одним из 256 уровней яркости, что при перемножении даёт около 16,7 миллионов оттенков комбинированного цветного пикселя (триады). На компьютерном жаргоне такая глубина цвета называется “True Color” и считается вполне достаточной для передачи изображения фотографического качества. Столько же дают обычные ЭЛТ. Яркость экрана последней разработки – 320 кД на кв.м при контрастности 400:1. Профессиональный компьютерный монитор даёт 350 кД, а телевизор – от 200 до 270 кД на кв.м при контрастности 150...200:1.

Эта диаграмма дает краткий обзор плазменной технологии. Компоненты диаграммы:

  1. Стадия электрического разряда
  2. Стадия возбуждения эммитера
  1. Внешний стеклянный слой
  2. Диэлектрический слой
  3. Слой Защиты
  4. Электрод отображения (приема)
  5. Поверхность разгрузки
  6. Ультрафиолетовые лучи
  7. Видимый свет
  8. Барьерное преграждение
  9. Флюоресценция (свечение)
  10. Электрод Адреса (корнирующий)
  11. Диэлектрический слой
  12. Внутренний стеклянный слой

Технологию плазменных мониторов удобно представить в виде следующей схемы:

Экран обладает следующими функциональными возможностями и характеристиками:

  • Широкий угол обзора как по горизонтали, так и по вертикали (160° градусов и более).
  • Очень малое время отклика (4 мкс по каждой строке).
  • Высокая чистота цвета (эквивалентная чистоте трех первичных цветовЭЛТ).
  • Простота производства крупноформатных панелей (недостижимая при тонкопленочном технологическом процессе).
  • Малая толщина - газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров;
  • Отсутствие геометрических искажений изображения.
  • Широкий температурный диапазон.
  • Механическая прочность.

Внедрение двух новых технологических структур резисторной и фосфорной позволило получить яркость и срок службы экрана на уровне, необходимом для практических применений. Новая фотолитографическая технология, а также метод станбластинга сделали возможным выполнить 40-дюймовую плазменную панель с высокой точностью.

Основные достоинства.

В последнее время при создания систем отображения информации для различного рода диспетчерских начинают применяться газоплазменные дисплеи (плазменные панели).Плазменные дисплеи (PDP) являются одной из последних разработок в области систем отображения информации (первые PDP появились в Японии в1997 году). Таким образом, плазменные панели по качеству изображения намного превосходят даже хорошие кинескопы, которые считаются в наше время эталоном. При этом очень важно, что плазменные панели абсолютно безвредны для здоровья, в отличие от электронно-лучевых трубок.

Совершенно очевидно, что они приходят на смену существующим мониторам на электронно-лучевых трубках в силу явных преимуществ, таких как:

  • Компактность (глубина не превышает 10 - 15 см) и легкость при достаточно больших размерах экрана (40 - 50 дюймов).
  • Малую толщину - газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров.
  • Высокую скорость обновления (примерно в пять раз лучше, чем у ЖК-панели).
  • Отсутствие мерцаний, и смазывания движущихся объектов, возникающих при цифровой обработке. поскольку отсутствует гашение экрана на время обратного хода, как в ЭЛТ.
  • Высокая яркость, контрастность и четкость при отсутствии геометрических искажений.
  • Отсутствие проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям.
  • Отсутствие неравномерности яркости по полю экрана.
  • 100-процентное использование площади экрана под изображение.
  • Большой угол обзора, достигающий 160° и более.
  • Отсутствие рентгеновского и других вредных для здоровья излучений,поскольку не используются высокие напряжения.
  • Невосприимчивость к воздействию магнитных полей.
  • Не страдают от вибрации, как ЭЛТ-мониторы.
  • Отсутствие необходимости в юстировке изображения.
  • Механическую прочность.
  • Широкий температурный дипазон.
  • Небольшое время отклика (время между посылкой сигнала на изменение яркости пикселя и фактическим изменением) позволяет использовать их для отображения видео- и телесигнала.
  • Более высокая надежность.

Плазменный экран можно снимать видеокамерой, и картинка при этом не дрожит, так как используется другой принцип отображения информации

Все это делает плазменные дисплеи очень привлекательными для использования. К числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст. В результате данное устройство позволяет:

  • Отображать компьютерную информацию с реальным разрешением XGA (1024х768).
  • Обеспечить комфортное наблюдение видеоинформации на расстоянии до 5 метров.
  • Обеспечить контраст изображения около 20 при уровне внешней освещенности у экрана 150 - 200 Lux.

Таким образом, с нашей точки зрения, такие дисплеи уже пригодны для профессионального применения. Однако, следует иметь ввиду, что несмотря на существенные различия в технологии, плазменные дисплеи используют тот же люминофор, что и электронно-лучевые трубки, который в отличие от ЭЛТ возбуждается не электронами, а ультрафиолетовым излучением газового разряда и также подвержен деградации, хотя и в меньшей степени. Различные фирмы-изготовители называют ресурс от 15000 часов (NEC) до 20000-30000 (Pioneer) часов по критерию снижения яркости в два раза.

Поскольку изображение носит статичный характер, были приняты специальные меры по защите дисплеев от выгорания. В данном случае было разработано специальное программное обеспечение, установленное на управляющих компьютерах, позволяющее осуществлять "орбитинг", т. е. медленное, незаметное для глаз наблюдателя круговое перемещение изображения, что позволяет продлевать срок службы плазменных дисплеев в несколько раз. Возможна и аппаратная реализация данной функции. Существуют специальные устройства, например VS-200-SL фирмы Extron Electronics, реализущие "орбитинг" даже синхронно на нескольких дисплеях. Однако, следует иметь в виду, что эффективность данного метода защиты плазменных дисплеев от выгорания реализуется только при соблюдении определенных требований по характеру изображения. В частности, фон изображения не должен быть белым.

Основные недостатки.

К числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст.

К недостаткам плазменных дисплеев также можно отнести невозможность "сшивания" нескольких дисплеев в "видеостену" с приемлемым зазором из-за наличия широкой рамки по периметру экрана

Тот факт, что размер коммерческих плазменных панелей обычно начинается с сорока дюймов, свидетельствует о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы вряд ли увидим плазменные панели, скажем, в портативных компьютерах. Это предположение подкрепляется и другим фактом: уровень энергопотребления "плазменников" подразумевает подключение их к сети и не оставляет никакой возможности работы от аккумуляторов. Еще один неприятный эффект, известный специалистам, - это интерференция, "перекрывание" микроразрядов в соседних элементах экрана. В результате подобного "смешивания" качество изображения, естественно, ухудшается.

Также к недостаткам плазменных дисплеев следует отнести то, что например средняя яркость белого цвета плазменных дисплеев составляет на настоящий момент порядка 300 кд/м2 у всех основных производителей. В общем и целом это достаточно ярко, однако плазменным дисплеям далеко до яркости ЭЛТ, составляющей 700 кд/м2. Подобная яркость может быть достигнута с повышением светоотдачи с 0,7 - 1,1 до 2 лм/Вт, однако этот рубеж преодолеть будет непросто. А также в настоящее время нельзя не заметить очень высокую цену плазменных дисплеев, доступных далеко не всем желающим.

Жидкокристаллические экраны.

Жидкий кристалл представляет собой некоторое состояние, в котором вещество обладает некоторыми свойствами как жидкости (текучестью), так и твердых кристаллов (например, анизотропией). Для изготовления ЖК-экранов используют так называемые нематические кристаллы, молекулы которых имеют форму палочек или вытянутых пластинок. ЖК-элемент помимо кристаллов включает в себя прозрачные электроды и поляризаторы. В отсутствие электрического поля молекулы нематических кристаллов образуют скрученные спирали. При прохождении в этот момент луча света через ЖК-элемент плоскость поляризации его поворачивается на некоторый угол. Если на входе и выходе этого элемента поместить поляризаторы, смещенные друг относительно друга на такой же угол, то свет беспрепятственно сможет проходить через этот элемент. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется и поворота плоскости поляризации уже не происходит. Как следствие, выходной поляризатор не пропускает свет. Примером может служить ЖК-индикатор наручных электронных часов.
Экран ЖК-дисплея представляет собой матрицу ЖК-элементов. В настоящее время существуют два основных метода адресации ЖК-элементов: прямой (или пассивный) и косвенный (или активный). В пассивной матрице ЖК-элементов выбранная точка изображения активируется подачей напряжения на соответствующие прозрачные адресные проводники-электроды строки и столбца. В этом случае невозможно достичь высокого контраста изображения, так как электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема вполне разрешима при использовании так называемой активной матрицы ЖК-элементов, когда каждой точкой изображения управляет свой электронный переключатель. Контраст при использовании активной матрицы ЖК-элементов может достигать значения от 50:1 до 100:1. Обычно активные матрицы реализованы на основе тонкопленочных полевых транзисторов (Thin Film Transistor, TFT). Неким компромиссом между активной и пассивной матрицей являются в настоящее время экраны, использующие технологию двойного сканирования (Dual Scan, DSTN), при которой одновременно обновляются две строки изображения.

На лицевой стороне экрана и адресными электродами, проходящими по его задней стороне. Газовый разряд вызывает ультрафиолетовое излучение , которое, в свою очередь, инициирует видимое свечение люминофора. В цветных плазменных панелях каждый пиксель экрана состоит из трёх идентичных микроскопических полостей, содержащих инертный газ (ксенон) и имеющих два электрода, спереди и сзади. После того, как к электродам будет приложено сильное напряжение, плазма начнёт перемещаться. При этом она излучает ультрафиолетовый свет, который попадает на люминофоры в нижней части каждой полости. Люминофоры излучают один из основных цветов: красный, зелёный или синий. Затем цветной свет проходит через стекло и попадает в глаз зрителя. Таким образом, в плазменной технологии пиксели работают, подобно люминесцентным трубкам, но создание панелей из них довольно проблематично. Первая трудность - размер пикселя. Суб-пиксель плазменной панели имеет объём 200 мкм x 200 мкм x 100 мкм, а на панели нужно уложить несколько миллионов пикселей, один к одному. Во-вторых, передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен.

Наконец, требуется подобрать правильные люминофоры. Они зависят от требуемого цвета:

  • Зелёный: Zn 2 SiO 4:Mn 2+ / BaAl 12 O 19:Mn 2+
  • Красный: Y 2 O 3:Eu 3+ / Y0,65Gd 0,35 BO 3:Eu 3
  • Синий: BaMgAl 10 O 17:Eu 2+

Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх суб-пикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона суб-пикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления суб-пикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах.

Немного истории.

Первый прототип плазменного дисплея появился в 1964 году. Его сконструировали ученые Иллинойского университета Битцер и Слоттоу как альтернативу кинескопному экрану для компьютерной системы Plato. Дисплей этот был монохромным, не требовал дополнительной памяти и сложных электронных схем и отличался высокой надежностью. Его предназначением было в основном индицировать буквы и цифры. Однако в качестве компьютерного монитора он так и не успел, как следует реализоваться, поскольку благодаря полупроводниковой памяти, появившейся в конце 70-х, кинескопные мониторы оказались дешевле в производстве. Зато плазменные панели благодаря малой глубине корпуса и большому экрану получили распространение в качестве информационных табло в аэропортах, вокзалах и на биржах. Информационными панелями плотную занялась компания IBM, а в 1987 году бывший студент Битцера, доктор Лэрри Вебер, основал компанию Plasmaco, которая занялась производством монохромных плазменных дисплеев. Первый же цветной плазменный дисплей 21" был представлен фирмой Fujitsu в 1992 году. Разрабатывался он совместно с конструкторским бюро Иллинойского университета и компанией NHK. А в 1996 Fujitsu покупает компанию Plasmaco со всеми ее технологиями и заводом, и выбрасывает на рынок первую коммерчески успешную панель плазмы – Plasmavision с экраном разрешения 852 х480 диагональю 42" с прогрессивной разверткой. Началась продажа лицензий другим производителям, первым среди которых стал Pioneer. Впоследствии, активно развивая плазменную технологию, Pioneer, пожалуй, больше всех остальных преуспел на плазменном поприще, создав целый ряд великолепных моделей плазмы.

При всем ошеломляющем коммерческом успехе плазменных панелей качество изображения поначалу было, мягко сказать, удручающим. Стоили же они баснословных денег, но быстро завоевали аудиторию благодаря тому, что выгодно отличались от кинескопных монстров плоским корпусом, дававшим возможность повесить телевизор на стену, и размерами экрана: 42 дюйма по диагонали против 32 (максимум для кинескопных телевизоров). В чем же был основной дефект первых плазменных мониторов? Дело в том, что при всей красочности картинки они совершенно не справлялись с плавными цветовыми и яркостными переходами: последние распадались на ступеньки с рваными краями, что на подвижном изображении выглядело вдвойне ужасно. Оставалось только гадать, отчего возникал данный эффект, о котором, как будто сговорившись, ни слова не писали средства массовой информации, превозносившие новые плоские дисплеи. Однако лет через пять, когда сменилось несколько поколений плазмы, ступеньки стали встречаться все реже, да и по другим показателям качество изображения стало стремительно расти. К тому же помимо 42-дюймовых появились панели 50" и 61". Постепенно росло и разрешение, и где-то на этапе перехода к 1024 х 720 плазменные дисплеи были, что называется, в самом соку. Совсем же недавно плазма успешно переступила новый порог качества, войдя в привилегированный круг устройств Full HD. В настоящее время наиболее популярными являются размеры экрана 42 и 50 дюймов по диагонали. В придачу к стандартному 61" появился размер 65", а также рекордный 103". Впрочем, настоящий рекорд только грядет: компания Matsushita (Panasonic) недавно анонсировала панель 150"! Но это, как и модели 103" (кстати, на основе панелей Panasonic плазмы такого же размера производит известная американская компания Runco), штука неподъемная как в прямом, так и в еще более прямом смысле (вес, цена).

Технологи плазменных панелей.

Просто о сложном.

Вес был упомянут неспроста: плазменные панели очень много весят, особенно модели больших размеров. Это является следствием того, что плазменная панель в основном состоит из стекла, если не считать металлическое шасси и пластиковый корпус. Стекло здесь необходимо и незаменимо: оно останавливает вредное ультрафиолетовое излучение. По этой же причине никто не производит люминесцентные лампы из пластика, только из стекла.

Вся конструкция плазменного экрана - это два листа стекла, между которыми находится ячеистая структура пикселей, состоящих из триад субпикселей - красных, зеленых и голубых. Ячейки заполнены инертными, т. н. «благородными» газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться. По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц. На самом деле каждый пиксель делится на три субпикселя, содержащих красный(R), зеленый(G) либо синий(B) люминофор: Зелёный: Zn2SiO4:Mn2+ / BaAl12O19:Mn2+ Красный: Y2O3:Eu3+ / Y0,65Gd0,35BO3:Eu3 Синий: BaMgAl10O17:Eu2+ Три этих люминофора дают свет с длиной волны между 510 и 525 нм для зелёного, 610 нм для красного и 450 нм для синего. Фактически вертикальные ряды R, G и B просто поделены на отдельные ячейки горизонтальными перетяжками, что делает структуру экрана очень похожей на масочный кинескоп обычного телевизора. Сходство с последним еще и в том, что здесь используется тот же цветной фосфор, которым покрыты изнутри ячейки субпикселей. Только поджог фосфорного люминофора осуществляется не электронным лучом, как в кинескопе, а ультрафиолетовым излучением. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Как получается свет. Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион.

Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу.

Среди всего этого хаоса частицы постоянно сталкиваются. Столкновения `возбуждают` атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов в ультрафиолетовом спектре.

При попадании фотонов на люминофор, частицы последнего возбуждаются, испускают свои собственные фотоны, но они уже окажутся видимы и приобретут форму световых лучей.

Между стеклянными стенками располагаются сотни тысяч ячеек, покрытых люминофором, который светится красным, зеленым и голубым светом. Под видимой стеклянной поверхностью - по всему экрану - расположены длинные, прозрачные дисплейные электроды, изолированные сверху листом диэлектрика, а снизу слоем оксида магния (MgO).

Чтобы процесс был стабильным и управляемым, необходимо обеспечить достаточное количество свободных электронов в толще газа плюс достаточно высокое напряжение (порядка 200 В), которое заставит ионный и электронные потоки двигаться навстречу друг другу.

А чтобы ионизация происходила мгновенно, помимо управляющих импульсов на электродах присутствует остаточный заряд. К электродам управляющие сигналы подводятся по горизонтальным и вертикальным проводникам, образующим адресную сетку. Причем вертикальные (дисплейные) проводники представляют собой токопроводящие дорожки на внутренней поверхности защитного стекла с передней стороны. Они прозрачны (слой окиси олова с примесью индия). Горизонтальные же (адресные) металлические проводники располагаются с тыльной стороны ячеек.

Ток течет от дисплейных электродов (катодов) к анодным пластинкам, повернутым под углом 90 градусов относительно дисплейных электродов. Защитный слой служит для исключения прямого контакта с анодом.

Под дисплейными электродами располагаются уже упомянутые нами ячейки пикселей RGB, выполненные в форме крохотных коробочек, изнутри покрытых цветным люминофором (каждая „цветная“ коробочка - красная, зеленая или голубая - называется подпикселем). Под ячейками находится конструкция из адресных электродов, расположенных под углом 90 градусов к дисплейным электродам и проходящих через соответствующие цветные подпиксели. Следом располагается защитный для адресных электродов уровень, закрытый задним стеклом.

Прежде, чем плазменный дисплей будет запаян, в пространство между ячейками впрыскивается под низким давлением смесь двух инертных газов - ксенона и неона. Для ионизации конкретной ячейки создается разность напряжений между дисплейным и адресным электродами, расположенными друг напротив друга выше и ниже ячейки.

Немного реалий.

На самом деле структура реальных плазменных экранов гораздо сложнее, да и физика процесса совсем не так проста. Помимо описанной выше матричной сетки существует и другая разновидность - сопараллельная, предусматривающая дополнительный горизонтальный проводник. Кроме этого, тончайшие металлические дорожки дублируют для выравнивания потенциала последних по всей длине, которая довольно значительна (1 м и более). Поверхность электродов покрыта слоем окиси магния, который выполняет изолирующую функцию и одновременно обеспечивает вторичную эмиссию при бомбардировке положительными ионами газа. Существуют и различные типы геометрии пиксельных рядов: простая и «вафельная» (ячейки разделены двойными вертикальными стенками и горизонтальными перемычками). Прозрачные электроды могут выполняться в форме двойного Т или меандра, когда они как бы переплетаются с адресными, хотя и находятся в разных плоскостях. Существует множество и других технологических хитростей, направленных на повышение эффективности плазменных экранов, которая изначально была довольно низкой. С этой же целью производители варьируют газовый состав ячеек, в частности, увеличивают процентное содержание ксенона с 2 до 10%. Кстати, газовая смесь в ионизированном состоянии слегка светится и сама по себе, поэтому, дабы устранить загрязнение спектра люминофоров этим свечением, в каждой ячейке устанавливают миниатюрные светофильтры.

Управление сигналом.

Последней проблемой остаётся адресация пикселей, поскольку, как мы уже видели, чтобы получить требуемый оттенок нужно менять интенсивность цвета независимо для каждого из трёх субпикселей. На плазменной панели 1280x768 пикселей присутствует примерно три миллиона субпикселей, что даёт шесть миллионов электродов. Как вы понимаете, проложить шесть миллионов дорожек для независимого управления субпикселями невозможно, поэтому дорожки необходимо мультиплексировать. Передние дорожки обычно выстраивают в цельные строчки, а задние - в столбцы. Встроенная в плазменную панель электроника с помощью матрицы дорожек выбирает пиксель, который необходимо зажечь на панели. Операция происходит очень быстро, поэтому пользователь ничего не замечает, - подобно сканированию лучом на ЭЛТ-мониторах. Управление пикселями осуществляется с помощью трех типов импульсов: стартовых, поддерживающих и гасящих. Частота - порядка 100 кГц, хотя известны идеи дополнительной модуляции управляющих импульсов радиочастотами (40 МГц), что обеспечит более равномерную плотность разряда в толще газа.

По сути, управление свечением пикселей носит характер дискретной широтно-импульсной модуляции: пикселей светятся ровно столько, сколько длится поддерживающий импульс. Длительность же его при 8-битной кодировке может принимать 128 дискретных значений, соответственно, получается такое же количество градаций яркости. Уж не в этом ли была причина рваных градиентов, распадающихся на ступеньки? Плазма более поздних поколений постепенно наращивала разрешение: 10, 12, 14 бит. Последние модели Runco, относящиеся к категории Full HD, используют 16-битную обработку сигнала (вероятно, и кодировку также). Так или иначе, ступеньки исчезли и больше, будем надеяться, не появятся.

Помимо самой панели.

Постепенно совершенствовалась не только сама панель, но и алгоритмы обработки сигнала: масштабирования, прогрессивного преобразования, компенсации движений, подавления шумов, оптимизации цветосинтеза и пр. У каждого производителя плазмы появился свой набор технологий, частично дублирующий чужие под другими названиями, но частично и свои. Так, почти все использовали алгоритмы масштабирования и адаптивного прогрессивного преобразования DCDi Faroudja, в то время как некоторые заказывали оригинальные разработки (например, Vivix у Runco, Advanced Video Movement у Fujitsu, Dynamic HD Converter у Pioneer и т. д.). В целях повышения контрастности вносились коррективы в структуру управляющих импульсов и напряжений. Для увеличения яркости в форму ячеек вводились дополнительные перемычки для увеличения покрытой люминофором поверхности и снижения засветки соседних пикселей (Pioneer). Постепенно росла роль «интеллектуальных» алгоритмов обработки: вводилась покадровая оптимизация яркости, система динамического контраста, продвинутые технологии цветосинтеза. Корректировки в исходный сигнал вносились не только исходя из характеристик самого сигнала (насколько темным или светлым являлся текущий сюжет или насколько быстро движутся объекты), но и из уровня внешней освещенности, который отслеживался с помощью встроенного фотосенсора. С помощью продвинутых алгоритмов обработки удалось достичь просто фантастических успехов. Так, компания Fujitsu путем интерполяционного алгоритма и соответствующих доработок процесса модуляции добилась увеличения количества градаций цвета в темных фрагментах до 1019, что намного превышает собственные возможности экрана при традиционном подходе и соответствует чувствительности человеческого зрительного аппарата (технология Low Brightness Multi Gradation Processing). Эта же компания разработала метод раздельной модуляции четных и нечетных управляющих горизонтальных электродов (ALIS), который затем использовался в моделях Hitachi, Loewe и др. Метод давал повышенную четкость и уменьшал зубчатость наклонных контуров даже без дополнительной обработки, в связи, с чем в спецификациях использовавших его моделей плазмы появился необычный показатель разрешения 1024 × 1024. Такое разрешение, конечно, являлось виртуальным, но эффект оказался весьма впечатляющим.

Достоинства и недостатки.

Плазма - это дисплей, который, подобно кинескопному телевизору, не использует светоклапаны, а излучает уже модулированный свет непосредственно фосфорными триадами. Это в определенной степени роднит плазму с электронно-лучевыми трубками, столь привычными и доказавшими свою состоятельность на протяжении нескольких десятилетий.

У плазмы заметно более широкий охват цветового пространства, что также объясняется спецификой цветосинтеза, который формируется «активными» фосфорными элементами, а не путем пропускания светового потока лампы через светофильтры и светоклапаны.

Кроме того, ресурс плазмы около 60000 часов.

Итак, плазменные телевизоры это:

Большой размер экрана + компактность + отсутствие элемента мерцания; - Высокая четкость изображение; - Плоский экран, не имеющий геометрических искажений; - Угол обзора 160 градусов по всем направлениям; - Механизм не подверженный влиянию магнитных полей; - Высокие разрешение и яркость изображения; - Наличие компьютерных входов; - Формат кадра 16:9 и наличие режима прогрессивная развертка.

В зависимости от ритма пульсации тока, который пропускается через ячейки, интенсивность свечения каждого субпикселя, контроль над которым осуществлялся независимо, будет разной. Увеличивая или уменьшая интенсивность свечения, можно создавать разнообразные цветовые оттенки. Благодаря такому принципу работы плазменной панели удаётся получить высокое качество изображения без цветовых и геометрических искажений. Слабой стороной является относительно низкая контрастность. Это связано с тем, что на ячейки постоянно должен подаваться ток низкого напряжения. В противном случае время отклика пикселей (их загорание и затухание) будет увеличено, что недопустимо.

Теперь о недостатках.

Передний электрод должен быть максимально прозрачным. Для этой цели используется оксид индия и олова, поскольку он проводит ток и прозрачен. К сожалению, плазменные панели могут быть такими большими, а слой оксида настолько тонким, что при протекании больших токов на сопротивлении проводников будет падение напряжения, которое сильно уменьшит и исказит сигналы. Поэтому приходится добавлять промежуточные соединительные проводники из хрома - он проводит ток намного лучше, но, к сожалению, непрозрачен. Боится плазма и не очень деликатной транспортировки. Потребление электроэнергии весьма значительное, хотя в последних поколениях его удалось существенно снизить, заодно исключив и шумные вентиляторы охлаждения.

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer -- светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы -- плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 сантиметров. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте -- на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. приложение Л, рис. 12). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд -- часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Высокая яркость до 650 кд/м2 и контрастность до 3000:1 наряду с отсутствием дрожания являются большими преимуществами таких мониторов (для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2 , а у телевизора -- от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях -- даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости -- панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

На этой страничке мы поговорим на такие темы, как: Устройства вывода информации , , Плазменные мониторы , Мониторы с электронно лучевой трубкой .

Монитор (дисплей ) устройство визуального отображения информации, предназначен для вывода на экран текстовой и графической информации.

Характеризуется монитор размером по диагонали, разрешающей способности, величиной зерна, максимальной частотой обновления кадров, по типу подключения.

Типы мониторов:

  • Цветные и монохромные.
  • Различного размера (от 14 дюймов).
  • С различным зерном.
  • Жидкокристаллические и с электронно-лучевой трубкой.

Монитор работает под управлением специального аппаратного устройства – видеоадаптера (видеоконтроллера, видеокарты), который предусматривает два возможных режима – текстовый и графический.

В текстовом режиме экран разбивается (чаще всего) на 25 строк по 80 позиций в каждой строке (всего 2000 позиций). В каждую позицию (знакоместо) может быть выведен любой из символов кодовой таблицы – прописная или строчная буква латинского или русского алфавита, служебный знак («+», «-», «.» и др.), символ псевдографики, а также графический образ почти каждого управляющего символа. Для каждого знакоместа на экране работающая с экраном программа сообщает видеоконтроллеру всего два байта – байт с кодом символа и байт с кодом цвета символа и цвета фона. А видеоконтроллер формирует изображение на экране.

В графическом режиме изображение формируется так же, как и на экране телевизора, – мозаикой, совокупностью точек, каждая из которых окрашена в тот или иной цвет. На экран в графическом режиме можно выводить тексты, графики, рисунки и т.д. А при выводе тестов можно использовать различные шрифты, любые размеры, шрифты, любые размеры, цвета, расположение букв. В графическом режиме экран монитора представляет собой, по существу растр, состоящий из пикселей.

Примечание

Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element»…

Количество точек по горизонтали и вертикали, которые монитор способен воспроизвести четко и раздельно, называется разрежающей способностью монитора. Выражение «разрежающая способность монитора 1024×768» означает, что монитор может выводить 1024 горизонтальных строк по 768 точек в каждой строке.

Существуют два основных типа монитора : жидкокристаллические и с электронно-лучевой трубкой . Менее распространенными являются плазменные мониторы и мониторы с сенсорными экранами .

Мониторы с электронно лучевой трубкой.

Изображение на экране монитора с электронно-лучевой трубкой создается пучком электронов, испускаемых электронной пушкой и принцип их работы аналогичен принципу работы телевизора. Этот луч (пучок электронов) разгоняется высоким электрическим напряжением и падает на внутреннюю поверхность экрана, покрытую составом люминофора, светящимся под его взаимодействием.

Люминофор наносится в виде наборов точек трёх основных цветов – красного (Red), зелёного (Green) и синего (Blue). Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Цветовая модель, в которой строится изображение на экране монитора называется RGB. Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксел – точку, из которых формируется изображение.

Расстояние между центрами пикселов называется точечным шагом монитора . Это расстояние существенно влияет на чёткость изображения. Чем меньше шаг, тем выше чёткость. Обычно в цветных мониторах шаг (по диагонали) составляет 0,27-0,28 мм. При таком шаге глаз человека воспринимает точки триады как одну точку «сложного» цвета.

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки «нацелены» на один и тот же пиксел, но каждая из них излучает поток электронов в сторону «своей» точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны.

Перед экраном на пути электронов ставится маска – тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета. Величиной электронного тока пушек и, следовательно, яркостью свечения пикселов, управляет сигнал, поступающий с видеоадаптера.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора , которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д. Количество отображённых строк в секунду называется строчной частотой развертки. А частота, с которой меняются кадры изображения, называется кадровой частотой развёртки.

Примечание

Последняя не должна быть ниже 60 Гц, иначе изображение будет мерцать…

Жидкокристаллические мониторы.

Жидкокристаллические мониторы (ЖК ) имеют меньший вес, геометрический объем, потребляют на два порядка меньше энергии, не излучают электромагнитных волн, воздействующих на здоровье людей, но дороже мониторов с электронно-лучевой трубкой .

Жидкие кристаллы – это особое состояние некоторых органических веществ, в котором они обладают текучестью и свойством образовывать пространственные структуры, подобные кристаллическим .

Жидкие кристаллы могут изменять свою структуру и светооптические свойства под действием электрического напряжения. Меняя с помощью электрического поля ориентацию групп кристаллов и используя введённые в жидкокристаллический раствор вещества, способные излучать свет под воздействием электрического поля, можно создать высококачественные изображения, передающие более 15 миллионов цветовых оттенков.

Большинство ЖК-мониторов использует тонкую плёнку из жидких кристаллов , помещённую между двумя стеклянными пластинами. Заряды передаются через так называемую пассивную матрицу – сетку невидимых нитей, горизонтальных и вертикальных, создавая в месте пересечения нитей точку изображения (несколько размытого из-за того, что заряды проникают в соседние области жидкости).

Плазменные мониторы.

Работа плазменных мониторов очень похожа на работы неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном.

Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подаются высокочастотные напряжения. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора, в диапазоне видимом человеком. Фактически каждый пиксель на экране работает как обычная флуоресцентная лампа.

Высокая яркость, контрастность и отсутствия дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к тому, под которым можно увидеть нормальное изображение на плазменных мониторах – 160° по сравнению с 145°, как в случае с ЖК мониторами . Большим достоинством плазменных мониторов является их срок службы. Средний срок службы без изменения качества изображения является 30 000 часов. Это в три раза больше чем обычная электронно-лучевая трубка . Единственное, что ограничивает их широкое распространение – это стоимость.

Разновидность монитора – с сенсорным экраном . Здесь общение с компьютером осуществляется путём прикосновения пальцем к определённому месту чувствительного экрана. Этим выбирается необходимый режим из меню, показанного на экране монитора .

Наверное, для многих из вас такие выражения, как плазменные технологии, плазменные мониторы звучат с некой долей экзотичности, а многие, наверняка, даже и не представляют себе, что это такое. И это понятно. Ведь плазменные мониторы на сегодняшний день - большая редкость, можно даже сказать роскошь, но, в любом случае, плазменные технологии – это очень передовые и очень перспективные технологии, которые сейчас находятся на стадии совершенствования. А, как известно, всё новое и совершенное всегда пробивает себе дорогу в жизнь. И, возможно, в скором будущем мы уже будем видеть плазменные мониторы абсолютно везде (в аэропортах, на вокзалах, в гостиницах и отелях, в различных залах для презентаций, и, может быть, даже у вас дома), и они уже не будут являться такой роскошью, которой являлись до сих пор.

Давайте всё-таки более подробно рассмотрим, что же такое плазменные мониторы или, другими словами, PDP-мониторы (PDP - plasma display panel), для чего они нужны, какими преимуществами и недостатками обладают по сравнению с другими видами мониторов и почему до сих пор для многих являются экзотикой?

Прежде всего, хочется отметить, что плазменные мониторы – это, как правило, мониторы с очень большой диагональю (40 – 60 дюймов), с совершенно плоским экраном, а сами мониторы являются очень тонкими (толщина их обычно не превышает 10 см) и одновременно очень лёгкими. И при всех этих достоинствах плазменные мониторы позволяют сохранить качество изображения на очень высоком уровне. А если учесть, что перед вашими глазами находится монитор такой величины, да который еще и показывает весьма недурно, то, я думаю, что с таким монитором вы никогда не будете скучать, например, при просмотре фильмов на презентациях. Это, на мой взгляд, действительно, очень эффектный и модный монитор.

Действительно, плазменная панель является одной из перспективных технологий плоских дисплеев. Эта технология используется уже достаточно давно, но довольно высокая потребляемая мощность и просто гигантские габаритные размеры дисплеев позволяли до сих пор использовать их разве что на улице в качестве огромных рекламных щитов с видеоизображением. Сегодня многие ведущие производители электроники имеют в своем ассортименте качественные плазменные дисплеи для профессионального и даже бытового применения. По качеству изображения и масштабным характеристикам современные плазменные дисплеи не имеют себе равных. Ведь они способны обеспечить, в силу особенностей плазменного эффекта, повышенную чёткость изображения, яркость (до 500 Кд/кв.м), контрастность (до 400:1) и очень высокую сочность цветов. Все эти качества наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Плазменные мониторы обладают наряду с вышеперечисленными особенностями еще и выдающимися потребительскими качествами: наименьшей толщиной, что, несомненно, поможет вам сэкономить полезное пространство помещения (вы сможете разместить свой монитор где угодно: на полу, на стене и даже на потолке); малым весом, что упрощает задачу безопасного и удобного размещения и транспортировки монитора; самым большим углом видимости изображения (около 160 градусов). Кстати, угол видимости изображения вообще является очень важным параметром монитора. Представьте себе, что вы смотрите на монитор не под прямым углом, а немножечко со стороны, и вдруг изображение прямо на ваших глазах начинает расплываться, и в определённый момент уже совершенно ничего нельзя разобрать на экране. Такой недостаток присущ, например, многим LCD-мониторам. Плазменные же мониторы из-за большого предельного угла обзора лишают вас «удовольствия» понаблюдать за процессом «растворения» изображения прямо у вас перед глазами. Ко всему выше сказанному, наверное, стоит также добавить то, что плазменные мониторы совершенно не создают электромагнитных полей, что служит гарантией их безвредности для вашего зрения и здоровья в целом. Вспомните, например, об излучении от мониторов с электронно-лучевой трубкой. Я думаю, что никто из вас не мечтает остаться «без глаз» после нескольких лет работы за плохим монитором. Эти мониторы также совершенно не страдают от вибрации. Чего, к сожалению, нельзя сказать о CRT-мониторах с апертурной решёткой. Так что вы, в случае необходимости, сможете расположить такой монитор в зонах частых подземных толчков или, например, вблизи железной дороги. Кстати, плазменный монитор очень неплохо будет смотреться в качестве табло на современных железнодорожных вокзалах и в аэропортах в качестве информационного видео-табло.

Необходимо также отметить и стойкость плазменных мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях. Ведь даже самый мощный магнит, помещенный рядом с таким монитором, никак не способен повлиять на качество изображения. Представляете, насколько это важно в условиях промышленного производства. А что касается бытового уровня, так вы без всякого опасения сможете разместить рядом со своим монитором любые акустические колонки, не боясь увидеть на экране различные пятна, как результат намагничивания экрана (напомню, что влияние электромагнитных полей очень сильно ощущается в CRT-мониторах). Так что, этот момент придаёт ещё большую свободу вашим действиям по оформлению вашего монитора и «обвешиванию» его всякими интересными «штучками» в стиле навесных колонок.

К положительным качествам плазменных мониторов также можно добавить их небольшое время регенерации (время между посылкой сигнала на изменение яркости пикселя и фактическим её изменением). Это позволяет использовать такие мониторы для просмотра видео, что в свою очередь делает такие мониторы просто незаменимыми помощниками на различных видеоконференциях и презентациях. А если ко всему выше приведённому списку достоинств добавить также отсутствие искажений изображения и проблем сведения электронных лучей и их фокусировки, которые присущи всем CRT-мониторам, то, наверняка, многие из вас скажут: «Да это же просто идеальные мониторы!». Да, действительно, мониторы и впрямь неплохие, и, возможно, в будущем они станут достойной заменой обычных традиционных мониторов. Но не стоит преждевременно торопиться с выводами. Ведь в любой, даже самой совершенной технологии существуют свои подводные камни, которые нужно отшлифовывать. Ну и, конечно, плазменная технология не лишена недостатков, которые, собственно говоря, сейчас и являются главными препятствиями на пути продвижения плазменных мониторов на мировой рынок.

Давайте рассмотрим самые основные недостатки плазменных мониторов. Итак, самым основным недостатком, который напрямую сказывается на низкой покупательской способности этих мониторов, является их очень высокая цена. Действительно, ведь цена среднего плазменного монитора сейчас составляет около $10000. Так что потенциальным покупателем такого монитора на сегодняшний день может стать либо какая-нибудь довольно крупная компания для проведения различных презентаций и видеоконференций, а может быть просто для поднятия своего собственного имиджа, либо частное лицо, для которого вопрос цены считается второстепенным по отношению к удобству использования и престижности устройства. Хотя, с другой стороны, эти мониторы сами формируют новую потребительскую нишу, будучи практически идеальным средством для демонстрации рекламных роликов или передачи общественной информации. Так что ценовой фактор сейчас уже для многих пользователей не играет решающую роль при выборе такого монитора.

Но, к сожалению, на этом недостатки плазменных мониторов не заканчиваются. Также очень существенным недостатком плазменного монитора является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора. Этот недостаток связан уже непосредственно с самой технологией получения изображения с использованием плазменного эффекта. Этот факт приводит к увеличению эксплуатационных затрат на данный монитор, но самое главное – это то, что высокое энергопотребление делает невозможным использование таких мониторов, например, в портативных компьютерах. Т.е. такому монитору однозначно требуется питание от городской сети. Так что невозможность использования аккумуляторов для питания таких мониторов вводит некие ограничения на область их использования. Но с учётом всеобщей электрификации можно отнести данный недостаток в разряд незначительных.

Ещё одним недостатком плазменных мониторов является довольно низкая разрешающая способность, обусловленная большим размером элемента изображения. Но, учитывая тот факт, что эти мониторы в основном используются на презентациях, конференциях, а также в качестве различных информационных и рекламных табло, то понятно, что основная масса зрителей находится на значительном расстоянии от экранов этих мониторов. А это способствует тому, что видимая на маленьком расстоянии зернистость просто исчезает на большом расстоянии. На такие мониторы действительно нужно смотреть на расстоянии. Да и не к чему близко подходить к здоровому монитору, ведь вы должны охватить своим зрением сразу весь экран, чтобы вам не пришлось усиленно «болтать» головой в разные стороны, дабы ухватить отрывки изображения в разных частях экрана. В связи с вышесказанным, довольно низкое разрешение, как правило, не является существенным недостатком плазменных мониторов.

Ещё одним довольно значимым недостатком плазменных мониторов является сравнительно небольшой срок службы. Дело в том, что это связано с довольно быстрым выгоранием люминофорных элементов, свойства которых быстро ухудшаются, и экран становится менее ярким. Для примера, уже через несколько лет интенсивной эксплуатации яркость свечения экрана может снизиться раза в два. Поэтому срок службы плазменных мониторов ограничен и составляет 5-10 лет при довольно интенсивной эксплуатации или около 10000 часов. И именно из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Особенно эти мониторы популярны на презентациях, ведь в этом случае срок службы монитора значительно увеличивается, т.к. он сравнительно редко находится в работе в отличие, например, от плазменного монитора, исполняющего роль круглосуточного рекламного видео-щита. Хотя, если хорошо подумать, 5-10 лет службы при интенсивной эксплуатации – это не так уж и мало. Я, например, с трудом представляю себе, например, монитор домашнего компьютера, который бы безотказно проработал больше десяти лет. А если ещё учесть тот факт, что сейчас различные фирмы-производители плазменных мониторов стараются сделать всё для увеличения срока службы мониторов, то и этот недостаток плазменных мониторов уже в скором будущем просто исчезнет.

Ещё одним недостатком плазменных мониторов является тот факт, что их размер обычно начинается с сорока дюймов. Это говорит о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы вряд ли увидим плазменные панели, скажем, в портативных компьютерах. Но данный недостаток плазменных мониторов можно расценивать, как его преимущество. Ведь именно с появлением этих мониторов был преодолён барьер максимально возможной диагонали плоских мониторов. Ведь обычные LCD-мониторы просто по своей технологии производства не могут быть выполнены с большой диагональю. А технология производства плазменных мониторов позволяет сейчас производить мониторы с диагональю до 63 дюймов. Представляете, какой гигант? И я уверен, что и это ещё не предел. А ведь всё это при маленькой его толщине! Но в случае с монитором такой огромной диагонали советую вам быть предельно внимательными, аккуратными и осторожными при его транспортировке. И не забывайте, что он не любит сильных вибраций, да и механические повреждения, я думаю, ему будут совершенно ни к чему. Так что, его лучше всего перевозить в специальной коробке с пенопластом, предназначенной именно для этой цели.

Еще один, наверное, последний неприятный эффект, возможный у плазменных мониторов – это интерференция. По сути дела, интерференция – это взаимодействие света разной длинны волны, излучаемого из соседних элементов экрана. В результате этого явления в определённой мере ухудшается качество изображения. Хотя, если учесть ту яркость, контрастность и сочность цветов, то результат проявления интерференции на мониторе будет едва ли заметен. И обычный непрофессиональный пользователь наверняка просто не заметит никаких отклонений в качестве изображения вашего монитора.

Ну вот, пожалуй, и все недостатки, присущие плазменным мониторам. И если теперь сопоставить все достоинства и недостатки плазменных мониторов, то налицо существенное преобладание всевозможных достоинств. К тому же, вы, наверняка, заметили, как мы в результате рассуждений многие из недостатков с лёгкостью отметали в сторону, а в некоторых из них вообще увидели положительные моменты. Да ещё не нужно забывать, что технический прогресс не стоит на месте, и в условиях жёсткой конкуренции фирмы-производители плазменных мониторов стремятся постоянно повышать качество выпускаемой продукции. Тем самым сейчас постоянно разрабатываются всё новые и новые технологии, способствующие снижению количества недостатков и вместе с тем снижению стоимости плазменных мониторов. Вот, например, компания Philips объявила цену на свой новый монитор Philips Brilliance 420P ниже загадочного барьера в 10000$. Этот факт уже наглядно показывает, что в данный момент чётко прослеживается тенденция снижения цен на плазменные мониторы, что, естественно, делает их доступными более широкому кругу потенциальных покупателей и открывает новые горизонты для использования плазменных мониторов.

Вообще плазменный эффект известен науке довольно давно: он был открыт еще в 1966 году. Неоновые вывески и лампы дневного света - лишь некоторые виды применения этого явления свечения газов под воздействием электрического тока. А вот производство плазменных мониторов для массового потребительского рынка начинается только сейчас. Это связано и с дороговизной таких мониторов, и с их ощутимой «прожорливостью». И хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар.

Каким же образом плазменную технологию учёным удалось применить для создания мониторов? Плазменная технология используется при создании сверхтонких, плоских экранов. Лицевая панель такого экрана состоит из двух плоских стеклянных пластин, расположенных на расстоянии около 100 микрометров друг от друга.


Между этими пластинами находится слой инертного газа (как правило, смесь ксенона и неона), на который воздействует сильное электрическое поле. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники - электроды, а на заднюю - ответные проводники. В современных цветных дисплеях переменного тока задняя стенка имеет микроскопические ячейки, заполненные люминофорами трех основных цветов (красного, синего и зеленого), по три ячейки на каждый пиксель. Именно при помощи смешения в определённых пропорциях этих трёх цветов и получаются различные оттенки цветного изображения в каждой точке экрана монитора. Газ, который находится между двух пластин, переходит в плазменное состояние и излучает ультрафиолетовый свет. Благодаря необычайной цветовой четкости и высокой контрастности перед вами возникает просто очень качественное изображение, которое, поверьте мне, порадует глаз даже самого дотошного зрителя.

Давайте теперь поговорим немного о компаниях и рынках, работающих в сфере производства и предложения плазменных мониторов. Конечно, сейчас очень многие компании из разных стран мира выставили на рынок свои модели плазменных мониторов, но несомненным лидером по количеству и качеству предложенных моделей являются различные Японские компании. Такие, например, как Hitachi, Sharp, NEC, Toshiba, JVC, Fujitsu, Mitsubishi, Sony, Pioneer и др. В условиях жёсткой конкуренции практически каждый производитель плазменных панелей добавляет к классической технологии собственные разработки, улучшающие цветопередачу, контрастность изображения, а также расширяющие спектр функциональных возможностей монитора. В условиях такой борьбы за лидирующее место на арене плазменных мониторов на потребительском рынке постоянно появляются всё новые и новые модели мониторов различных фирм, которые с каждым разом не только становятся качественнее, но и постоянно падают в цене, что в лучшую сторону сказывается на покупательской способности всё большего числа пользователей. Вообще, на мой взгляд, чем жёстче будет конкуренция среди лидеров по производству плазменных мониторов (а, уж поверьте мне, на сегодняшний день жёстче уже некуда), тем более качественную и дешёвую продукцию будем получать мы с вами.

Признанным лидером плазменной технологии является компания Fujitsu, которой накоплен самый большой опыт в этой области и, кроме того, этой компанией вложено огромное количество денег в разработку новых моделей мониторов. В 1995 году Fujitsu вышла на рынок с новой коммерческой серией плазменных дисплеев Plasmavision, которую совершенствует и по сей день.
Компании NEC и Thomson подтвердили решимость развивать сотрудничество в области разработки технологи плоского плазменного дисплея. Результатом такого сотрудничества является появление на потребительском рынке новой модели Thomson, обдающей более высокой разрешающей способностью, благодаря высококачественным панелям NEC. Обе компании намерены также продолжать и самостоятельные разработки.
Pioneer предлагает предназначенные для профессионального применения плазменные панели с, пожалуй, самым широким набором технологий улучшения изображения. Рынок плазменных дисплеев обязан компании Pioneer технологией сверхчеткого изображения.
Корпорация Mitsubishi выпускает сразу несколько линий плазменных мониторов с диагональю 40 дюймов: серию телевизоров DiamondPanel и серию презентационных панелей Leonardo.

В общем, каждая компания «крутится» как хочет и как может, стремясь обойти своих конкурентов. И это нормально. Ведь всё это способствует улучшению качества и снижению цены на плазменные мониторы.
По данным компании Display Search, занимающейся исследованием рынка плоскоэкранных дисплеев скачок продаж в 2001 г. по сравнению с 2000 г. составил 176% (152000 единиц в 2000, 420000 единиц в 2001 году), хотя приведенные исследования касаются, прежде всего, американского рынка плазменных дисплеев. Цифры для европейского рынка и, тем более, для российского выглядят значительно скромнее, однако динамика развития отрасли совпадает.

В любом случае, налицо перспективность развития рынка плазменных мониторов. И сейчас плазменные технологии по праву можно назвать технологиями 21 века. Ведь действительно можно проследить тенденцию вытеснения традиционных мониторов плазменными. Хотя пока о полном вытеснении говорить ещё очень рано, всё равно, например, налицо вытеснение видеопроекторов для домашних кинотеатров плазменными мониторами. В плазменных мониторах, в отличие от видеопроекторов домашних кинотеатров нет необходимости располагать проецирующее устройство на расстоянии от экрана - с активной технологией отображения информации все размещено в плоском корпусе. Также стоит отметить то, что изображение на экране плазменного монитора прекрасно видно, не зависимо от условий освещённости помещения, в то время как для того, чтобы комфортно посмотреть, например, фильм в домашнем кинотеатре, который работает при помощи видеопроектора, вам просто необходимо будет затемнить вашу комнату. Иначе, в светлый ясный день увидеть чёткое изображение вам так и не удастся. А вот на экране плазменного монитора вы всегда будете видеть насыщенное изображение великолепного качества. Так что видеопроекторы, которые до сих пор так и не дошли до рядового пользователя из-за своей очень высокой цены (комплект оборудования для домашнего кинотеатра может стоить 15-25 тыс. долларов) видимо потихонечку, не спеша так и «отплывут» на второй план с появлением всё более новых моделей плазменных мониторов.

Плазменные мониторы - это совершенно новое поколение техники для отображения видео и компьютерной информации, пришедшее на смену привычным CRT-мониторам. Плазменная технология - это технология будущего. В наше время уникальные характеристики плазменных мониторов открывают перед собой широкие возможности для их применения. Благодаря минимальной толщине мониторов - менее 10 сантиметров, широкому углу обозрения и небольшому весу, плазменные дисплеи с каждым днем приобретают все более прочную репутацию очень привлекательного и соблазнительного объекта, способного украсить любую стену. Их можно использовать практически везде: в аэропортах и на вокзалах, в супермаркетах и в казино, в банках и гостиницах, на выставках и конференциях, на презентациях и различных шоу, на телестудиях и в бизнес центрах. И этим списком круг применения плазменных мониторов не ограничивается. Уникальные характеристики мониторов позволяют использовать их также и для промышленного производства. Удобная эргономическая конструкция, позволяющая размещать монитор в любом удобном для вас месте, и специальные фирменные, а значит, кстати, и не дешёвые аксессуары позволяют устанавливать мониторы на полу, вешать их на стены с разным уровнем наклона, подвешивать к потолку и т.д.

В дополнение к плазменным мониторам существует целый спектр дополнительного оборудования, такого, например, как акустические колонки, всевозможные подставки, тумбочки и кронштейны для крепления, которые, как правило, продаются отдельно за большие деньги. Дорогие они по той причине, что, во-первых, они фирменные, а, во-вторых, как правило, сделаны специально для определённой модели монитора, а значит, они идеально подходят по дизайну именно к этому монитору. А с другим дополнительным оборудованием монитор, наверняка, уже не будет выглядеть так престижно и аккуратно. И в этой ситуации вы, наверное, со мной согласитесь, что нерационально будет «лепить» на Мерседес колёса от Жигулей. И из-за этого пользователю ничего не остаётся делать, как покупать все эти «прибамбасы» для своего монитора по баснословным ценам.

Из всего выше сказанного можно сделать один вывод: за плазменными мониторами большое будущее, а нам – рядовым пользователям остаётся только ждать и надеяться на то, что когда-нибудь цены на эти мониторы упадут настолько, что они станут для нас доступными, и мы сможем наслаждаться высоким качеством изображения даже у себя дома.